BC337, BC338 #### **Small Signal Transistors (NPN)** Dimensions in inches and (millimeters) #### **FEATURES** - NPN Silicon Epitaxial Planar Transistors for switching and amplifier applications. Especially suitable for AF-driver stages and low power output stages. - ◆ These types are also available subdivided into three groups -16, -25, and -40, according to their DC current gain. As complementary types, the PNP transistors BC327 and BC328 are recommended. - On special request, these transistors are also manufactured in the pin configuration TO-18. #### **MECHANICAL DATA** Case: TO-92 Plastic Package Weight: approx. 0.18 g #### MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25 °C ambient temperature unless otherwise specified | | | Symbol | Value | Unit | |---|----------------|------------------|-------------------|------| | Collector-Emitter Voltage | BC337
BC338 | V _{CES} | 50
30 | V | | Collector-Emitter Voltage | BC337
BC338 | V _{CEO} | 45
25 | V | | Emitter-Base Voltage | | V _{EBO} | 5 | V | | Collector Current | | Ic | 800 | mA | | Peak Collector Current | | I _{CM} | 1 | А | | Base Current | | I _B | 100 | mA | | Power Dissipation at T _{amb} = 25 °C | | P _{tot} | 625 ¹⁾ | mW | | Junction Temperature | | Tj | 150 | °C | | Storage Temperature Range | | T _S | -65 to +150 | °C | ¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case # BC337, BC338 #### **ELECTRICAL CHARACTERISTICS** Ratings at 25 °C ambient temperature unless otherwise specified | | Symbol | Min. | Тур. | Max. | Unit | |--|----------------------|-------------------|-------------------|------------------------|----------------------| | DC Current Gain at V _{CE} = 1 V, I _C = 100 mA | | | | | | | Current Gain Group -16
-2!
-40 | 5 h _{FE} | 100
160
250 | 160
250
400 | 250
400
630 |
 -
 - | | at V_{CE} = 1 V, I_C = 300 mA
Current Gain Group -16
-25
-40 | 5 h _{FE} | 60
100
170 | 130
200
320 | -
-
- |
 -
 -
 - | | Collector-Emitter Cutoff Current at $V_{CE} = 45 \text{ V}$ BC33 at $V_{CE} = 25 \text{ V}$ BC33 at $V_{CE} = 45 \text{ V}$, $T_{amb} = 125 \text{ °C}$ BC33 at $V_{CE} = 25 \text{ V}$, $T_{amb} = 125 \text{ °C}$ BC33 BC33 BC33 BC33 BC33 BC33 BC33 BC3 | I _{CES} | -
-
-
- | 2
2
-
- | 100
100
10
10 | nA
nA
μA
μA | | Collector-Emitter Breakdown Voltage at I _C = 10 mA BC336 BC337 | (Dit)OLO | 20
45 | | _
_ | V | | Collector-Emitter Breakdown Voltage at I _C = 0.1 mA BC336 BC337 | | 30
50 | | _
_ | V | | Emitter-Base Breakdown Voltage at I _E = 0.1 mA | V _{(BR)EBO} | 5 | - | _ | V | | Collector Saturation Voltage at $I_C = 500$ mA, $I_B = 50$ mA | V _{CEsat} | - | - | 0.7 | V | | Base-Emitter Voltage at $V_{CE} = 1 \text{ V, } I_{C} = 300 \text{ mA}$ | V _{BE} | - | - | 1.2 | V | | Gain-Bandwidth Product at $V_{CE} = 5 \text{ V}$, $I_{C} = 10 \text{ mA}$, $f = 50 \text{ MHz}$ | f⊤ | _ | 100 | _ | MHz | | Collector-Base Capacitance at V _{CB} = 10 V, f = 1 MHz | C _{CBO} | _ | 12 | _ | pF | | Thermal Resistance Junction to Ambient Air | R _{thJA} | _ | _ | 2001) | K/W | GENERAL SEMICONDUCTOR® #### **RATINGS AND CHARACTERISTIC CURVES BC337, BC338** ### Admissible power dissipation versus ambient temperature Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case # Pulse thermal resistance versus pulse duration Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case # Collector current versus base-emitter voltage # Gain-bandwidth product versus collector current #### **RATINGS AND CHARACTERISTIC CURVES BC337, BC338** # Collector saturation voltage versus collector current Base saturation voltage versus collector current # DC current gain versus collector current ### Common emitter collector characteristics #### **RATINGS AND CHARACTERISTIC CURVES BC337, BC338** ### Common emitter collector characteristics # Common emitter collector characteristics #### This datasheet has been downloaded from: www. Data sheet Catalog.com Datasheets for electronic components.